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Abstract

The density recovery profile is a plot of the spatial density of a set of points as a function of the distance of
each of those points from all the others. It is based upon a two-dimensional point autocorrelogram. If the
points are randomly distributed, then the profile is flat, with a value equal to the mean spatial density. Thus,
any deviation from this value indicates that the presence of the object represented by the point alters the
probability of encountering nearby objects of the same set. Increased value near an object indicates
clustering, decreased value near an object indicates anticlustering. The method appears to be unique in its
ability to provide quantitative measures of the anticlustered state. Two examples are presented. The first is
based upon a sample of the distribution of the somata of starburst amacrine cells in the macaque retina; the
second is based upon the distribution of the terminal enlargements on the dendrites of a single macaque
ganglion cell that projects to the superior colliculus. In both cases, the density recovery profile is initially
lower than the mean density, and increases up to the plateau at the value of the mean density. Two useful
measures can be derived from this profile: an intensive parameter termed the effective radius, which
quantifies the extent of the region of decreased probability and is insensitive to random undersampling of the
underlying distribution, and an extensive parameter termed the packing factor, which quantifies the degree of
packing possible for a given effective radius, and is insensitive to scaling. An extension of this method,
applicable to correlations between two superimposed distributions, and based upon a two-dimensional point
cross-correlogram, is also described.

Keywords: Spatial distribution, Territorial domains, Nearest-neighbor analysis, Undersampling,
Anticlustering

Introduction

Most of the cell types of the vertebrate retina are not randomly
distributed but show some degree of spatial organization (e.g.
Wassle & Riemann, 1978). Characteristically, near a given cell,
there is a decreased probability of encountering another cell of
the same type (anticlustering). However, many methods that in-
vestigate the distribution of neighboring points are designed pri-
marily for characterizing the clustering of points (i.e. where
there is an increase in the probability that a second point will
lie near a given point; e.g. Ripley, 1981; Rose & Grimson,
1988).

One of these methods, introduced by Clark and Evans
(1954) and based upon a histogram of nearest neighbors, has
nevertheless been widely and effectively used to analyze the spa-
tial distribution of various types of retinal cells (e.g. Wassle &
Riemann, 1978; Vaney et al., 1981; Voigt, 1986). The observed
distribution of nearest neighbors is compared to the theoretical
curve for a random (Poisson) process, which leads to a test for
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significance. A weakness of this method is that only the nearest
neighbor of a given cell is recorded, although there are related
methods that make use of all neighbors. A second difficulty is
that the resulting histogram provides only an indirect indication
of the distribution of other cells in relation to a given cell.

Given data in which there is a decreased probability of en-
countering nearby cells, the possibility arises that there may be
another approach in which this decreased probability might be
more simply represented. If so, then it might be possible to find
a useful measure for the effective "dead space" about a given
cell. This paper describes one such approach, perhaps the sim-
plest possible. It leads naturally to a measure of the dead space,
termed the effective radius, which, somewhat remarkably, is in-
sensitive to random undersampling. An additional measure,
termed the packing factor, proves insensitive to scaling, and for
some cell types at least, appears to change little over large vari-
ations in spatial density.

This method can demonstrate either the clustering or anti-
clustering of points in a plane, but does not address the issue
of why the distribution of retinal cells or the distribution of the
terminals of a single cell deviate from randomness (a forthcom-
ing paper will present a specific hypothesis for the observed dis-
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tribution of the somata of starburst amacrines). Instead, this
method is concerned with how to express such deviation, and
how resulting measures of it can be interpreted.

Description of method

Figure 1A shows the distribution of a group of labeled cells in
the ganglion cell layer that lay within a 1-mm-wide strip of a
wholemounted macaque retina. These data came from a study
of cells labeled by means of an antibody to choline-acetyltrans-
ferase (ChAT) (Rodieck & Marshak, 1989). A 1-mm2 portion
of this strip is shown in Fig. IB. In the example to be presented,
the aim is to characterize the relation between the presence of
a point and the occurrence and distribution of other points that
lie within 200 /im of it. The dotted rectangle is inset by 200 /tm
from the bounds so every point within it is surrounded by other
points in all directions out to at least this distance. The inset re-
gion has an area of 0.36 mm2, and contains 102 cells, so that
the average density within it is 283 cells mm"2. One of these
cells is marked with a plus sign, and a circle having a radius of
200 fim has been drawn around it. Within this circle are 35
other cells, lying at varying distances and directions with respect
to the reference cell.

The basic idea is to superimpose the distribution of other
cells using every cell in the region as a reference cell. Imagine
placing a reference point somewhere near the middle of a piece
of translucent paper. Place the paper on the diagram, align the
reference point with the plus sign, and mark the positions of the
35 other points in the diagram that lie within the 200-fim circle.
The result is show in Fig. 1C.

In the upper right of the dotted rectangle is another labeled
cell, again highlighted by means of a plus sign. Shift the trans-

lucent paper to align its reference point with the point that rep-
resents this cell, and again mark on this paper the positions of
all of the other points that lie within 200 jtm of the mark. The
result is shown in Fig. ID. Repeat this process for each of the
remaining 100 cells within the dotted rectangle. The result,
termed the spatial autocorrelogram, is shown enlarged in Fig. 2.
Every circular symbol shows the average size of the somata of
these cells at this retinal eccentricity; the superimposed reference
cells are shown as a single black circle, and all those offset from
each of the reference cells are shown in gray. By construction,
this diagram shows the combined offsets from every cell in the
dotted rectangle to every other cell that lies within 200 /*m of
it. There is a partial radial symmetry to this diagram, produced
by those pairs of points for which each point lies within the
dotted rectangle (e.g. if point a is to the left of point b, then b
is to the right of point a by the same distance).

If the distribution were entirely random, then the occurrence
of a cell should not alter the probability of occurrence of those
away from it and thus the average density should be the same
at all offsets. However, visual inspection suggests that there
may be fewer cells near the reference cell than at larger offsets,
and we now consider how such a deviation from randomness
can be quantified.

Figure 3A is a replot of Fig. 2, with the somata now repre-
sented by points. There is also a series of circles, drawn about
the reference point and separated by 10 ̂ m, which defines a se-
ries of annuli. The expected number of points in each annulus
is easily calculated. Let

A = area of the region containing the reference points (i.e.
the dotted rectangle in Fig. IB);

N = number of points in A;

iSii
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Fig. 1. Diagram to illustrate the construction of a spatial autocorrelogram. A: 1-mm-wide strip of ChAT-labeled cells from
a macaque retina. Data from Rodieck and Marshak (1989). B: 1-mm2 portion of this strip. Radius of circle = 200 ^m. C: Off-
sets about one of the cells in the dotted rectangle, marked with a plus symbol in the upper left region of the dotted rectangle.
D: Superimposed offsets about two of the cells in the dotted rectangle, each marked with a plus.
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Fig. 2. Spatial autocorrelogram for the points lying within the dotted rectangle in Fig. IB. The location of the reference point
is indicated by a black circle whose size matches that of the somata of the labeled cells. The gray symbols show the offsets of
all of the other cells from each reference cell that lies within a 200-^m radius of that reference cell.

D = density of points in the region, equal to N/A;
i = index to each annulus: 1,2,... (or the corresponding

bin in the density recovery profile, as discussed
below);

AAj = area of annulus /;
Ar = width of each annulus (and bin width of the density

recovery profile, described below);
n, = measured number of points in annulus /;
X,- = expected number of points in annulus /, assuming a

random (Poisson) distribution; and
dj = density measure for the density recovery profile, de-

fined below.

The area of an annulus is easily shown to be

A/4, = irAr2(2i - 1). (1)

The expected number of points in an annulus is the product of
the expected number to be found in the annulus for each ref-

erence point times the number of reference points N. Assum-
ing a random distribution of points in the region of interest, the
expected number in the annulus for each reference point is sim-
ply the density of the points D times the area of the annulus
A/1,-:

X,- = NDAA,.

Let

NAA,

(2)

(3)

The expected value of this measure for a random distribution
is then

d ~ X' -D
^.random " ^ ^ " »,

(4)

and thus independent of the bin number.
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Fig. 3. A: Same as Fig. 2, with cells now represented by points, and a series of annuli of width 10 fim drawn about the refer-
ence point. B: Density of points in each 10-deg sector of the upper diagram, shown as a radial plot, whose axis (indicated by
arrow to upper left) is spatial density. The tick marks to the right of the center are in increments of 100/mm2. The mean density
(283 cells/mm2) appears as a circle superimposed upon the bounds defined by ± the standard deviation for Poisson statistics,
shown as a light gray annulus. The region between the density of each sector and the mean density is shown as medium gray.
The observations that the sector densities lie without apparent pattern on each side of the mean, and that only about a third
of them extend beyond the standard deviation annulus are consistent with the hypothesis that there is no significant orienta-
tion of the distribution of points with respect to some axis in the plane. C: Density recovery profile, aligned to show the rela-
tion between each bin of this profile, and the corresponding annulus of the spatial autocorrelogram. The thin vertical line shows
the effective radius, and the arrowhead shows the maximum radius; these terms are defined in the text.

Figure 3C plots the density measure dh for the successive
annuli, and provides a compact means of showing the relation
between the presence of a cell and the radial distribution of the
cells that lie near it. This construction will be termed the den-

sity recovery profile. The term recovery is meant to express the
return to the mean spatial density as distance increases from the
reference point. The light gray zone shows the mean density.
The annular densities, in darker gray, initially lie well below this
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level, cross it at about 60-70 nm, and continue at an average
level slightly above the mean level.

Object size

The somata considered here are shown in Fig. 2 as circles that
approximate their shape and size, in order to make evident the
fact that, when the somata lie in a single layer, there is a mini-
mum distance between their centers. The somata of ChAT-
labelled cells in this sample are approximately spherical and of
uniform size, so this minimum distance is equal to their diam-
eter (about 8 fim). Thus, a reduced probability over this distance
may indicate nothing more than the fact that two cells cannot
occupy the same space. The observed decrease in probability,
however, extends well beyond this value, and thus cannot be so
simply accounted for. A measure of the extent of this zone of
decreased probability, termed the effective radius, is described
below.

Orientation
The above construction is valid whether or not the distribution
of points is oriented in the plane. However, certain inferences
and measures that can be derived from the density recovery pro-
file require that the distribution is radially symmetric (i.e. iso-
tropic). Issues of orientation in the general sense of this term are
somewhat involved, and will be taken up in the Discussion.
However, the presence of global orientation, meaning the same
orientation factors are applied to all points in the same way, is
simple to test over the region of the data sample. Consider first
a random (Poisson) distribution of points on a rubber sheet.
Imagine this sheet stretched horizontally. It is simple to show
that the density recovery profile will still be flat, and the auto-
correlogram will still be radially symmetric, since the local spatial
density, although reduced, remains everywhere constant. Thus,
for purely random distributions, anisotropic stretching alters the
spatial density of points, but does not disturb the radial sym-
metry. However, if the points are nonrandomly distributed so
that in the autocorrelogram there is a "hill" (clustering) or "val-
ley" (anticlustering) about the reference cell, then stretching will
alter that shape, and radial symmetry will be lost. In effect,
global orientation factors will make the density of cells offset
from a reference cell dependent upon the angle of the offset.

The diagram in Fig. 3B shows the spatial density of offsets
from a reference cell, plotted for each 10-deg sector of the data
in the upper diagram (see legend for details). There is no sys-
tematic variation in density with angle, indicating that if global
orientation over the sample region is present, then it is too small
to have much influence upon the measures to be discussed
below.

A second example

Figure 4A is a drawing of a ganglion cell, termed a maze cell; it
is taken from a study on the projection of ganglion cell types to
different regions of the macaque brain (Rodieck & Watanabe,
1988). Figure 4B (upper) is a photomicrograph that shows, at
higher magnification, a portion of the dendritic tree of this cell.
The dendrites of maze cells give off spines that terminate in
small swellings, indicated in Fig. 4B (lower) by means of circles.
Figure 4C shows the spatial distribution of these swellings. Fig-
ure 4D shows the density recovery profile for this distribution.

Just as there can be a decreased probability of the occurrence
of another cell near one of the same type, so too can there be
a decreased probability of finding another swelling near one of
the same cell. Although the scale is different, the method is the
same. Figure 4D also illustrates the distribution of the nearest
neighbor to each swelling in the sample.

Effective radius

Although the shape of the density recovery profile provides
some insight into the manner in which the distribution deviates
from randomness, there exists a useful scalar measure, based
upon it, that quantifies one's intuitive notion of a "dead space"
about each cell.

Consider again the density recovery profile for ChAT-la-
beled cells, shown in Fig. 3C. Seen in three dimensions, and rel-
ative to the mean density, there is a dip in average spatial
density about the reference point that extends about 60 /xm
from the reference point. Although it is useful to think of this
dip as a volume in this geometric space, the measure itself has
number (#) as its dimension, since the third axis density has the
dimensions of #/area. This "volume" is readily calculated from
the data in Fig. 3. Let AV: be the volume of the dip for annu-
lus i and Ve the total volume of the dip, obtained by adding the
volumes of the annuli until the density value for an annulus ex-
ceeds the mean density (i.e. until the calculated volume for the
annulus becomes negative). Now the volume of the dip for a
given annulus is simply the area of the annulus times its height:

Substituting from eqns. (2) and (3),

N '

so that

« until n/>

(5)

(6)

(7)

In this case, Ve = 0.95 points/reference point. In itself, Ve is a
useful measure of the magnitude of the average "dead space"
about each point. However, just as dendritic-field diameter is
an easier measure to visualize than dendritic-field area, a linear
measure proves easier to visualize than this volumetric measure,
which also depends as well on mean density. It is therefore con-
venient to reconfigure this volume into a cylinder having a
height equal to the mean density and a radius calculated to give
the cylinder the same volume as that of the dip. This calculated
value will be termed the effective radius. The total decrease in
cells within the dip is then made equivalent to one composed of
a step change from zero to the mean density at the effective ra-
dius. Let re be the effective radius. Then, by definition,

so that

Ve =

r. =

(8)

(9)
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Fig. 4. A: Drawing of a maze cell; data from Rodieck and Watanabe (1988). Dotted line indicates the area of the photomicro-
graphs in part B. {Figure continued on the facing page.)

In this example, the effective radius is 32.7 ^m, and is shown
as a thin vertical line in the density profiles shown in Figs. 3C
and 4. As discussed below, the reliability of this measure de-
pends ultimately upon the expected number of counts per bin,
where the distribution is random. Thus, a higher mean density,
a larger sample area, and a wider bin width all improve the re-
liability of this measure, but do not directly influence its value.

Reliability
Too few points, or too narrow bins, can produce an unreliable
estimate of effective radius-typically an underestimate, and
thus a bias. The underlying reason for this potential bias is that
the bins at the start of the profile contain fewer counts, and
thus greater variability. This section analyzes this situation from
a quantitative perspective, and describes a method for choos-
ing the sample area and the bin width that will generate an es-
timate of the effective radius to a selected level of reliability and
variance. For a random (Poisson) distribution, the variance a1

in the number of points in a given area is equal to the mean
number X:

Substituting from eqn. (2),

o2=NDAA.

The Poisson distribution approaches the binomial distribution
as X increases; assuming that to be the case,

This is the standard deviation about the mean number of points
in a bin. In order to plot it in the density recovery profile,
we must multiply by the scale factor for each bin, as given in
eqn. (3):

1
(10)

Substituting for A/4,, from eqn. (1):

1

i - 1)

Let

(11)

then

Dc (12)

The value Dc depends only on the sample area A and the bin
width Ar It has the dimensions of spatial density and is termed
the critical density. For the sample area shown as the dotted rec-
tangle in Fig. 1 (0.36 mm2) and for a bin width of 10 ̂ m (e.g.
Fig. 3), Dc is equal to 94.0 mm"2. Figure 5 shows the scaled
standard deviation a\ plotted against bin number, about the
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Fig. 4 continued. B: Duplicate photomicrographs of spines and swellings. In the lower one the swellings are highlighted with
circles —open if the swelling is in focus and filled if it is out of the plane of focus of the micrograph. C: Spatial distribution
of swellings, together with a dashed rectangle that indicates the data used for analysis. Note that this is a different rectangle
than that shown in part A. D: Density recovery profile of swellings. Only the points that lay within the dashed rectangle of part
C were included in the analysis, and a compensation factor was applied to allow all points to be included in the analysis, as dis-
cussed in the text. As in Fig. 3C, the light gray shows the mean density, and the medium gray shows the density recovery pro-
file. The dark gray profile shows the fraction of the counts that were also the nearest neighbor to the reference cell. When the
distances between points approach the resolution of the system (in this case the microscope and camera lucida), there exist two
possible ways of generating an artifactual dip in the density recovery profile. The first is by failing to resolve two nearby ob-
jects; the second is by recording their positions with slightly larger separations, so that the points remain resolvable on the record-
ing medium (e.g. pencil marks on a paper). In both cases, it is important to recognize that the number of counts in each bin
of the density recovery profile depends upon the bin number, since annuli near the reference cell have smaller areas than those
farther away. In effect, small changes in the counts in the first few bins have much larger effects than similar changes to the
counts of subsequent bins. Thus, failing to resolve two nearby objects can have a profound effect on the shape of the density
recovery profile. If positions are recorded with larger separations, then this will have no effect if the increase does not put the
offset value into the next bin. But if it does, then the resulting decrease in the height of the previous bin will be larger than the
increase made to the height of the next bin (this will change the shape of the density recovery profile, but will not alter a mea-
sure of the magnitude of the dip). In the case of the density recovery profile shown here, the swellings on the spines were dark,
small (<0.4 fim), and there was a clear gap between all nearest neighbors. The same dip was seen for the three maze cells tested.
Consequently, we are confident that the dip is real.

mean value for each bin, assuming a random distribution of mean density D, their amplitude is independent of it, since this
points having a spatial density D of 283 cells mm~2 (i.e. the
value for the points shown in Fig. 1 A). The standard deviation
decreases with bin number, as expected, starting from a value
of Dc for the first bin.

Although the standard deviation bars are shown about the

amplitude depends only upon the sample area and the bin
width. In other words, if D were made smaller, the standard de-
viation bars would drop, but would not change in size (eventu-
ally the assumption of a binomial distribution would be
violated). Clearly, if D is large compared to Dc, the sample es-
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Fig. 5. Standard deviation bars above and below the mean spatial den-
sity (horizontal line) for the amplitudes of the bins in a density recov-
ery profile, based upon a random distribution. Sample area equal to that
of the dotted rectangle in Fig. 1 A, a bin width of 10 (<m, and a spatial
density of 283 mm"2. D: mean density, Dc: critical density [eqn. (11)];
and o,: scaled standard deviation for bin /'.

with a given effective radius can be packed. Consideration of
this issue leads to a dimensionless measure, termed the packing
factor, that ranges from 0 for a random distribution to 1 for a
packed hexagonal array of uniform disks (i.e. maximal pack-
ing of nonoverlapping disks). As discussed in the next section,
the packing factor proves to be invariant to scaling.

A random distribution will show a density profile in which
each bin will, on average, have a density measure equal to the
average density; thus the effective radius will be zero if statis-
tical fluctuations are ignored. The maximum radius rm possible
for a given density is found by determining the spacing of a
maximally packed array having the same average density D.
Maximum packing in two dimensions is achieved by hexagonal
packing, where the area per point a is

-Ju- (17)

Since

timates for each bin will be good, and the estimate of the effec-
tive radius will be reliable. Thus, a practical measure of the
robustness of this measure is simply

(13)

In the case considered, it has a value of 283/94 or 3.0. The ex-
pected number of points in the first bin of the density recovery
profile, assuming a random distribution, is the square of this
value [substitutions from eqns. (1), (2), (11), and (13)]:

X, = NDAA\ = NDirAr2 = D2AirAr2 = — = k2. (14)El
D2

C

It is convenient to consider the sample area consisting of a
square of side s:

s=4A. (15)

Substituting in the above equation, and rearranging terms yields

k
sAr = (16)

The observed spatial density D and a chosen reliability factor
k define a minimum value for sAr. One can thus calculate the
minimal sample area, given the bin width, or the minimal bin
width, given the sample area. For example, for a reliability fac-
tor of 4, a spatial density of 283 mm"2, and an area of 1 mm2,
a bin width of not less than 8 jtm should be used.

The section entitled Statistical Testing below describes how
to determine the variation in effective radius as a function of
the reliability factor.

Packing factor

Although the effective radius is a useful measure, its maximum
possible value is constrained by the observed spatial density.
This limit proves to depend upon how tightly a set of points

we have

a

D

The volume of the maximum decrease Vm is a constant:

(18)

(19)

Vm = irr2
lD = ir I- = 3.6 points/reference point. (20)

In this example, with a density of 283 cells/mm2, the spacing
between adjacent cells arranged in a hexagonal array is 63.9 /*m.
This point is shown as an arrow in the density recovery profile
of Fig. 3C. The packing factor p is defined to be the square of
the ratio of the effective radius to the maximum radius:

(21)

Since the effective radius can range from 0 to rm, the packing
factor ranges from 0 to 1. In this example;

p = (32.7/63.9)2 = 0.26.

The packing factor is also equal to the ratio of the volume of
the observed dip Ve to the volume of the maximum dip Vm:

Ve _ irr2 D r2

Vm ~ wrl D ~ rl ~ P'
(22)

Thus, in this example, using the value of Ve calculated earlier;

p = 0.95/3.6 = 0.26.

Consider the packing of nonoverlapping disks of a given size.
In this context, the packing factor also gives the fraction of the
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maximum number of disks of that size that could be maximally
(i.e. hexagonally) packed. Thus, in the above example, it would
have been possible to have placed about four times more cells
in the sample region, without their "dead spaces" overlapping,
although they have to be arranged in an ordered hexagonal
array to do so. If the packing factor is equal to 1, then the
points are necessarily distributed in a hexagonal array.

It is easy to show that a square array has a packing factor
of 0.87; thus, neglecting side effects, a box containing a single
layer of 87 balls packed in a square array could hold 100 such
balls if they were packed hexagonally. This example serves to
illustrate that although a large packing factor implies some de-
gree of regularity, the packing factor, as its name implies, is a
measure of packing, not of regularity.

Scaling alters the effective radius, but does not alter
the packing factor
Imagine placing a photographic negative of the distribution

of points such as shown in Fig. IB in a photographic enlarger,
so that the linear scale is increased by a factor of 2. This will in-
crease the area of any region by a factor of four. Since the num-
ber of points in the region remains unchanged the density of
points will be reduced by four. Since the distance between ev-
ery pair of points will be increased by a factor of 2, the effec-
tive radius must necessarily double. For the general case let

5 = scaling factor;
D' = scaled density for some region;
r[, = scaled effective radius; and
V'e = scaled volume of the dip in density.

We have

7 = undersampling factor, as a fraction of full sampling;
£>' = measured density for some undersampled region;
n'j = measured number of points in annulus / for the un-

dersampled region;
A V'j = volume of the dip in annulus / for the undersampled

region;
Vg = measured volume of the dip in density for the under-

sampled region;
r'e = calculated effective radius for the undersampled re-

gion; and
r'm = calculated maximum radius for the undersampled

region.

Now the undersampling affects both the measured density and
the number of points collected in each annulus:

D' = yD,

n'j = yn.

Therefore, from eqns. (3) and (5),

AVI = AA,(D' - d,') = AA,[D' - j ^

- > ^ D - ^ -

Since the total volume is simply the sum of all of the annular
volumes,

r'e = sre,

" • - ? •

so that

'= K- (23)

Thus, the volume of the dip is not altered by scaling. Since Vm

is a constant, it follows that Ve/Vm remains unaltered, and
consequently, so does the packing factor, which, as shown
above, is equal to this ratio. The invariance of the packing fac-
tor to scaling is consistent with the fact that it is a dimension-
less measure.

Random undersampling reduces the packing factor,
but does not alter the effective radius
Let us assume that the positions of only a fraction of the

cells in some region were determined, using some method that
randomized which of the cells would be included. Consider the
annuli shown in Fig. 3A. On average, the number of cells in
each annulus will be reduced by this fraction. As the amplitude
of the bin in the density recovery profile is simply the number
of points in the corresponding annulus divided by the area of
the annulus, the amplitude of each bin will consequently be re-
duced by this fraction. The shape of the profile thus remains
unchanged, only the vertical scale is affected by the undersam-
pling. Let

Hence, from eqn. (9):

= / •„ . (24)

The effective radius is thus insensitive to undersampling. The
maximum radius, however, depends upon the mean density:

D' yD
(25)

For example, if we undersample by half, the mean density and
the packing factor will be reduced by half, and the maximum
radius will be increased by V2.

These considerations illustrate a fundamental difference be-
tween the effective radius and the maximum radius. The effec-
tive radius is an intensive (local) measure, characteristic of
individual points, whereas the maximum radius, and conse-
quently the packing factor, are extensive (global) properties of
the distribution of points.

Cross-correlation

A natural extension of this approach is to compare how objects
of one type are distributed with reference to objects of some
other type. For example, how the somata of starburst amacrine
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cells that lie in the inner nuclear layer are laterally disposed with
respect to the somata of each of the starbursts of the ganglion
cell layer. The resulting distribution, termed the spatial cross-
correlogram, is similar to the spatial autocorrelogram (e.g.
Fig. 2). Except for a rotation by 180 deg, it has exactly the same
form whichever of the two groups is used as the reference
points. If the two sets of points are statistically independent,
then the points will be uniformly distributed, and the resulting
profile will be flat, independent of the shapes of the density re-
covery profiles of each of the two groups.

The expected number of points in each annulus may be cal-
culated as follows. Define

A = area of the region that contains the reference points;
yv, = number of points in the region that belong to the first

group;
N2 = number of points in the region that belong to the

second group;
Di = density of points in the region that belong to the first

group = /V, /A;
D2 = density of points in the region that belong to the

second group = N2/A;
i = index to each annulus: 1,2,... (or the corresponding

bin in the density recovery profile);
A/4,- = area of annulus /;
Ar = width of each annulus;
ri; = measured number of points in annulus /; and
\ , = expected number of points in annulus /' assuming a

random distribution.

The expected number of points in the annulus is then the
product of the expected number to be found in the annulus for
each reference point times the number of reference points Nt.
Assuming a random distribution of points in the region of in-
terest, the expected number in the annulus is simply the density
of the points D2 times the area of the annulus A/1,-:

Since, by substitution and rearrangement,

A=

we have

Let

d,=

(26)

(27)

(28)

(29)

then the expected value of this measure for a random distribu-
tion is

^•/.random (30)

This is the simplest scaling factor for the bins of the cross-cor-
relogram that has the dimensions of density and goes to zero as
either of the two density values goes to zero.

Compensation factor to maximize data inclusion
for rectangular regions

In the density recovery profile for cell bodies, shown in Fig. 3C,
the cells used as reference points were all restricted to the inte-
rior of the dotted rectangle shown in Fig. IB. This region in-
cludes only 36% of the area of the 1-mm2 sample area. In this
special case, the bounds of the dotted rectangle could have been
extended above and below the 1-mm2 region, since additional
sampled points lie in these directions. But if the bounds of the
dotted rectangle were extended to the left or right, then a bias
would arise, since large annular zones about these extended por-
tions would include portions of the retina that were not sam-
pled. Nevertheless, if the extent of the unsampled portion is
known, then it can be used to calculate a compensation factor,
assuming similar and uniform conditions in the unsampled
regions.

Figure 6 illustrates how the compensation factor can be cal-
culated for a given annular zone of radius r. We assume that
there are no sampled points outside the rectangle drawn with
the continuous line. For each of its sides a dotted line is drawn
parallel to the side, and inset from it by r. These dotted lines di-
vide the rectangle into nine regions. A reference point within the
central region requires no compensation for this particular ra-
dius, for the annular zone lies wholly within the rectangle.
There are four side regions, and a point lying in one of them is
shown at the top (Fig. 6A). The shaded region of its annular
zone lies outside the sample region, and the effective sample
area of this annular zone is consequently reduced. Let ft be the
perpendicular distance from the point to the upper side of the
sample region and / s be the ratio of the actual sample area to
the total sample area for a given annulus. Then

cos ' -

given in Appendix 1.1. This factor varies from 0.5 for a point
lying on the border (h = 0) to 1 for a point lying on the dotted
horizontal line. The reduction as a function of vertical position
is shown in the shaded region to the right (Fig. 6B). The ratio
fs of the effective sample area to the actual area for points
lying in this side region, found by integrating h over the range
from 0 to r, is (see Appendix 1.1):

(31)

For the four corner regions, two cases need to be considered.
If a point lies within the shaded region at the top left (Fig. 6C),
then there are two portions of the annular zone that lie outside
the sample area. The extent of each portion can be calculated
as described above; and for the purpose of calculation the point
can be viewed as belonging to both the upper side region and
the left side region. If a cell lies in the other portion of the cor-
ner (Fig. 6D), then we can again view it as belonging to both
side regions that intersect at the corner, provided that the reduc-
tion in the sample area of the annulus that is shown in black is
counted only once. These considerations lead to the following
equation, whose derivation is outlined in Appendix 1.2:

/ = ! -
2r

W)
•KLW

(32)
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Fig. 6. Diagram to illustrate how data points lying outside the dotted rectangle can be included in the analysis, provided that
a compensation factor is included in the calculation. See text for details.

where L and W are the length and width of the rectangular
patch, as indicated in Fig. 6. This compensation factor varies
with r, and thus must be applied bin by bin to a density re-
covery profile. Figure 7B shows this method applied to the cells
contained in the full 1-mm2 region of Fig. IB, compared with
the uncompensated density recovery profile for the 0.36-mm2

sample region enclosed by the dotted rectangle, shown in Fig. IB
and reproduced in Fig. 7A.

Figure 7C shows the result of the nearest-neighbor analysis
applied to the same data. In this type of analysis, the shape of
the histogram of nearest neighbors is compared to that of the
predicted distribution of randomly distributed points with the
same spatial density (Rayleigh distribution), shown here as
the smooth curve. Compared to the curve, the histogram tends
to be shifted to the right, indicating a deviation from random-
ness in the anticlustering direction.

Expected variance in re for a random distribution

Even a random distribution of points can generate re values
greater than 0, since by chance, the first and one or more suc-
cessive bins in the density recovery profile may have values less
than the mean density. In order to investigate this effect, we re-
turn to the measure of the volume of each annulus used to cal-
culate the effective radius:

N

0

X,- > n, t

X; < rt, .
(33)

This variable includes the parameter N, the total number of ref-
erence points. In order to express the variation in a more gen-
eral manner, we introduce a new variable AQt defined as
follows:

NAV:
x,

(34)

which specifies the value of this measure for a given bin / and
a given count in the bin «,-. Assume for the moment that we
have a specific count for each bin (nx,n2,n-i,...). Then the
summed value Q for all bins is, from eqns. (7) and (34),

until m>\, (\ . _ „ \= ,5 -TT
NVe

\r

Ar

until n,>X,

(35)
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or

(36)

This is the result for a given set of bin values (n,,n2,n},...).
The only independent factor on the right-hand side of this equa-
tion is X, [eqn. (34)]. Since, by eqn. (14) X, is the square root
of the reliability factor k, we can also use k as the independent
factor, and this is the underlying reason for devising the param-
eter Q. The probability density function of re/Ar can now be
determined by calculating the probabilities of all combinatorial
possibilities of the set of bin values (nltn2,n3,...). The num-
ber of counts in a given bin «,- is a random variable governed
by the Poisson distribution:

4001 ', = X) = —- e~x'.
XI

(37)

Distance (\im) 200

Fig. 7. A: Same density recovery profile as shown in Fig. 3C, with
nearest neighbors shown in darkest gray. The data points are those con-
tained within the dotted rectangle of Fig. IB. Effective radius = 32.7 /im.
Arrowhead here and below indicates the maximum radius. B: Same data
as for diagram A, except that all data points in the 1 mm2 are used, to-
gether with a compensation factor discussed in the text. Again, the con-
tributions of nearest neighbors are shown in darkest gray. Effective
radius = 32.4 fim. C: Nearest-neighbor analysis for the same data used
in diagram A. The gray histogram shows the distribution of nearest
neighbors; the curve shows the Rayleigh distribution for an equal num-
ber of points distributed randomly with the same density. The shape of
this histogram differs from that of the nearest-neighbor histogram
shown in darkest gray in diagram A, because a scaling factor has been
applied to each bin of the latter histogram, as described in the text. The
mean value (34.6 pm) is shown as a thin vertical line.

It is not actually necessary to calculate separately the probabil-
ities of each combinatorial set (nx,n1,n-i,...), since a proba-
bility tree terminating in convolution integrals can be used to
combine the summed probability distributions from different
bins. The algorithm devised for this calculation is straightfor-
ward, but detailed, and will not be described.

Significance testing

The aim behind these calculations is to determine the distribu-
tion of values of re/Ar for a random distribution having a
given reliability factor k, so that one can test whether or not a
measured value for re is significantly different from that pro-
duced by a random distribution of points. It is therefore con-
venient to plot the parameter

-P[k,(re/Ar)], (38)

where P[k,(re/Ar)] is the probability distribution function,
found by summing the probability density functions. Figure 8
shows this parameter plotted against re/Ar for different values
of the reliability factor k calculated by the method outlined
above. For example, the distribution of cells shown in Figs. 1-
3 had a measured value for r of 32.7 /im, using a 10-/tm bin
width. Their ratio (3.27) is shown as a vertical line along the ab-
scissa in Fig. 8. The reliability factor is 3.0, as described earlier.
The probability that the observed value for the effective radius
was drawn from a random distribution is the intersection of this
vertical line with the curve labeled k = 3. In this case, the inter-
section point lies well below the graph, indicating a high signif-
icance level for the hypothesis that the distribution of points
was not randomly distributed.

Distribution of re for a nonrandom distribution

The calculated value for the effective radius of the density re-
covery profile in Fig. 3C was 32.7 ^m, based upon 102 reference
points, contained in an area of 0.36 mm2, a 10-/im bin width,
and a calculated reliability factor, k of 3.0, as discussed above.
We know qualitatively that the expected variation in this mea-
sure should vary inversely with the reliability factor k, but this
information is insufficient to put standard deviation bars on
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each side of the effective radius. In order to do so, we need to
model the observed density recovery profile, and use this model
to determine the expected distribution of re/Ar for a given k
value, using the same general approach as outlined above for
the case of the random distribution.

The model chosen for the dip in the density recovery profile
is shown in Fig. 9A. It is an inverted cone, whose apex lies at
the origin, with a radius of R. The volume of this cone Vc is

nR2D (39)

so that the expected value for the effective radius, from eqn.
(24), is

(40)

Figure 9B shows the normalized probability density function of
rc/Ar for a given value of the reliability factor k. This function
was calculated in the same way as for those of Fig. 8 (proba-
bility tree leading to convolution integrals), except that all vol-
umes were restricted to the range 0 to R. The reason for this
restriction is that actual density recovery profiles rise above the
mean value for a while because of second-order effects, as
noted earlier, and this feature is not included in the model. In
fact, because of these second-order effects, which are a direct
consequence of the dip itself, the distribution of counts in one
bin is not entirely statistically independent of that in an adja-
cent bin. The assumptions used to perform the calculation are
thus not exactly correct, although the error appears to be small.

The shaded tails of Fig. 9B each compose 15.87% of the to-
tal area. This fraction is the area of a tail of a normal distribu-
tion from one standard deviation, and the distance to a tail is
thus equivalent to that of an ordinary standard deviation bar.
Figure 9C shows the size of the standard deviation bars as a
function of the reliability factor.

1.0!

0.5

x
A

0.2

0.1

w 0.05

0.02

0.01

Fig. 8. Probability that a measured value of re/Ar from a random dis-
tribution is greater than a given value, as a function of the reliability
factor k.

The magnitude of the standard deviation from re/Ar in
Fig. 9C is shown by two curves that plot the equations a/mver =
0.6/t"0-859 and aupper = 0.74/t~0-957, whose coefficients were ad-
justed to fit the integer values of k for 2-5. The equations were
empirically fit, and thus without theoretical significance; how-
ever, their exponents are close to —1, indicating that the stan-
dard deviation bars decrease in an approximately reciprocal
manner with an increase in the reliability factor. The actual
curves are fractal staircases, although the irregularity is rela-
tively small.

Implementation
The density recovery profiles shown here were calculated and
printed using a Macintosh application written by me and named
MacDRP, which is available upon request.

Discussion

In this paper, I have presented a method that allows one to ex-
amine the relations between objects in the plane and surround-
ing objects. These relations are expressed in terms of a
concatenated profile of the average spatial density of the sur-
round objects, and two measures derived from it: the effective
radius of an average object and the packing factor of the ob-
jects that surround it. A method of determining the reliability
of these measures is presented. Several other aspects of the dis-
tribution of objects are also important.

Orientation

The term orientation, when applied to the distribution of points
in the plane, implies some dependence upon one or more direc-
tions within the plane. We need to consider the possibility of
orientation, because the interpretation applied to measures ex-
tracted from the density recovery profile depend upon it. The
term global orientation was introduced earlier, in the section ti-
tled Orientation, and used to refer to orientation factors that
are presumed to be constant over the sample area. For the spa-
tial distributions that formed the examples used here, there was
no detectable global orientation over the sample region. How-
ever, if significant anisotrophic growth of the retina occurs af-
ter the distribution of points has been established then, like
stretching, it should produce an orientation detectable via a ra-
dial plot of density vs. angle of offset, such as shown in Fig. 3B.

The size of the domain being considered is critical to the
notion of orientation. For example, the spatial distribution
of cones in the retinas of many species, including primates,
show a local hexagonal packing even in the periphery, where
they are well-separated from one another. The axes of this ori-
entation are, however, not constant throughout the retina. Con-
sequently, this type of orientation may not be readily detectable
over sample areas that are large compared to the rate of change
of the axes of orientation. Likewise, orientation detectable
within any sample region may vary with retinal position, de-
pending upon factors such as anisotropic growth. For additional
discussion of orientation factors in spatial autocorrelograms,
see Cliff and Ord (1973); more sensitive tests for detecting it are
described by Zar (1974). However, both effective radius and
packing factor appear to be reasonably robust as far as a lim-
ited amount of orientation is concerned, so that orientation
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Fig. 9. Expected variation in the measured value for the effective ra-
dius, for a distribution of points having the density recovery profile
shown in part A. The model is that of a dip in density about a given
point, having the shape of an inverted cone, whose apex lies at the
point, and whose radius R is 5 times the bin width Ar at the mean den-
sity D. The cone is indicated by the white line with thin black borders.
The expected height of each bin was calculated to equal that of the cone
volume it encompasses. The ratio of the expected variation in the effec-
tive radius to the bin width depends only upon the reliability factor k.
Diagram B shows the probability density function of this ratio for a re-
liability factor equal to 3, based upon the model profile shown in part
A. Diagram C plots standard deviation bars for re/Ar, against differ-
ent values of k, based upon calculated probability densities such as the
one shown in part B. The standard deviation bars are shown about the
calculated value for the mean effective radius.

constitutes an additional measure rather than a necessary inval-
idation of those presented here.

Autocorrelograms and spatial frequencies

The autocorrelogram is a standard method in signal analysis,
which readily lends itself to the distribution of points in any
dimensional space. Rodieck (1967) applied it to the maintained
discharge of retinal ganglion cells in order to determine how the
occurrence of an action potential influenced the occurrence of
subsequent action potentials. The Laplace transform of the au-
tocorrelogram gives the power density spectrum. In the exam-
ples presented here, the dip in spatial density about a given cell
in the spatial domain would be reflected in the frequency do-
main as a peak in the power density spectrum somewhere near
the reciprocal of the width of the dip. For the starburst ama-
crines, with an effective radius 32.7 ^m, the peak would lie
somewhere around 30 cycles/mm; for the swellings of maze
cells, with an effective radius of 1.4 ^m, the peak would lie
around 700 cycles/mm, with a magnitude, width, and position
that depends upon the packing factor.

Related methods

Plant ecologists have developed a number of measures of dis-
tributions in the plane, which they have used to determine the
degree to which trees or bushes of the same species cluster (e.g.
Ripley, 1981). Some are devised for and suited to measurements
in the field, where it is often easier to measure the distances be-

tween objects, or upon the number of objects contained within
some area, than to determine absolute positions. For the latter
case, the L-function of Ripley (1981) may be viewed as a trans-
formation (scaled integral) of the density recovery profile de-
scribed here. Diggle (1986) extended a related measure and
applied it to ChAT-labeled cells in the rabbit retina. Shapiro
et al. (1985) devised an elastic ball model for the distribution of
blue cones in the primate retina, and used these measures to fit
their data to the model.

These methods may be somewhat stronger than the ap-
proach presented here when it comes to testing for statistical sig-
nificance in critical situations, since they are based upon
cumulative distributions rather than scaled histograms, and thus
avoid the complications associated with bin widths. The books
by Ripley (1981), Diggle (1983), and Cliff and Ord (1973)
should be consulted should this prove to be an issue. However,
when the deviation from randomness is obvious (e.g. Fig. 3C),
and highly significant (e.g. Fig. 8, where the probability of the
null hypothesis is so small that it lies off the diagram), then the
method and measures described here provide an alternative that
presents the data in a readily comprehensible form.

Perhaps the most widely used method for the spatial anal-
ysis of retinal distributions is based upon the distance of each
point to its nearest neighbor, introduced as a quantitative
method by Clark and Evans (1954) and first used for retinal
analysis by Wassle and Riemann (1978). The basic method is to
compare the observed histogram of nearest neighbors with the
distribution derived for a random (Poisson) arrangement of
points, and known as the Rayleigh distribution. Figure 7 relates



Density recovery profile 109

this nearest-neighbor measure to the density profile shown in
Fig. 3C. Figure 7A shows the nearest-neighbor contribution to
the density recovery profile, and Fig. 7C shows the bin count
of nearest neighbors compared to that of a Rayleigh distribu-
tion of points having the same spatial density.

It is obvious from Fig. 7 that the density recovery profile
provides a substantially different measure than the more tradi-
tional nearest-neighbor/Rayleigh-distribution analysis, and pos-
sesses three advantages when compared with it. First, estimates
are based upon all of the other points about a given point,
rather than just one, thereby increasing reliability. Second, any
deviation from randomness is readily seen in the deviation of
the amplitude of the density recovery profile from the mean
density. But the real value of the density recovery profile lies in
its ability to provide a local measure of the effective "dead
space" around an average object (i.e. the effective radius), and
a measure characteristic of the spatial distribution itself (i.e. the
packing factor).
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Appendices

Appendix 1.1

Derivation ofeqn. (31)
With reference to Fig. 10A,

For the annulus:

Total Sample Area = 2-irrAr,

Effective Sample Area = (2ir - 26)rAr,

Effective Sample Area
/ , = Total Sample Area

2ir - 26 _ 6_
2ir ir'

cos M -
,r

7T

The average value is found by integrating x over the range from
zero to r:

r Jo

Appendix 1.2

Derivation ofeqn. (32)
Figure 10B shows a sample area divided into nine regions in

the same manner as for Fig. 6. The symbol in each region cor-
responds to its area:

a = (L-2r)(W-2r),

b= (W-2r)r,

e=(L- 2r)r,

cos 6 = -.
r

Area a requires no compensation factor. Areas b and c require
the compensation factor for sides described above. The corner

B

I- r -H

W
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d
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d

Fig. 10. A: Parameters for the calculation of the compensation factor for the sides of the sample area in Appendix 1.1. B: Pa-
rameters for the calculation of the compensation factor for the corners of the sample area in Appendix 1.2. C: Parameters for
the calculation of compensation factor/, in Appendix 1.2.
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areas (d) also require a compensation factor fc, as discussed
below. Let

b' = /,*,

C =fsc,

d'=fcd.
For the annulus,

Effective Sample Area = a + 2b' + 2c' + 4d',

Total Sample Area = a + 2b + 2c + 4d = L W,

Effective Sample Area
Total Sample Area

= a + 2fs(b + c) + 4fcd
LW

The only factor that remains to be evaluated in the above equa-
tion is/c. The essential problem is to determine what fraction
of the annulus in Fig. 6D lies outside the sample area. Figure IOC
shows a number of parameters that allow this fraction/,, to be
calculated. For an annulus of radius r, and width Ar,

Total Sample Area = 2irrAr,

Effective Sample Area = (2ir — 20s)rAr,

Effective Sample Area
/c = Total Sample Area

2TT - es , 0,

2* 2 * '

Within this region, any annulus of radius r touches or overlaps
both the left and the bottom borders. The angular portion ly-
ing outside the border, 8S, may be viewed as consisting of two
portions: one due to the sum of the two side contributions,
taken separately; the other being a negative factor, equal to the
angular overlap between the two side contributions dc:

Os = 20.v + 26y — 6C.

Substituting into the above equation for/c,

, , 20, + 2(L - Bc

This separation is necessary because the limits of integration
differ for the two terms. The mean value for/cl is readily
evaluated:

l rr 2
/ n = -2 fdlx,y)dydx= 1 - - .

r Jo Jo T

In evaluating 6C, we need to consider two situations shown in
Fig. 6C and 6D. For all points shown in the shaded area in
Fig. 6C, there is no overlap between the upper and left portions
of the annulus that lie outside the sample region. Hence, 6C is
equal to 0 everywhere in the shaded area of Fig. 6C. For the rest
of area d, shown shaded in Fig. 6D,

7T

2"

Hence,

fc2 =

•K

2

2TT

cos-'f^J +cos-'( i

~lir

The mean value for/c2 leads to a difficult integration, because
the radical in the upper limit of the inner integral creates com-
plications for the outer integral; but it evaluates to a simple
value:

1 rrHr1-*2 i
= - fc2(x,y)dydx=—.

r2JoJo 47r

Hence,

/c=/c1+/c2=l - -
w

The compensation factor is thus

Mean Effective Sample Area
/ =

/ =

Total Sample Area

a + 2fs(b + c) + 4fcd
LW

After substitutions and rearranging terms,

•KLW •KLW

where

cos '

fa = I " - - ^ = 1 -

f - C
Jc2- —•

2ir

cos
- l

This equation is valid for any combination of the parameters
r, L, and H t̂hat leave area a > 0. The smallest value of this fac-
tor (1 - 7/(4TT) = 0.44) occurs when L = W=2r.
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